Video Diffusion Models Learn the Structure of the Dynamic World
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Abstract

Diffusion models have demonstrated significant progress in
visual perception tasks due to their ability to capture fine-
grained, object-centric features. In this work, we explore
the potential of diffusion models for video understanding
by analyzing the feature representations learned by both
image- and video-based diffusion models, alongside non-
generative, self-supervised approaches. We propose a uni-
fied probing framework to evaluate seven models across
four core video understanding tasks: action recognition,
object discovery, scene understanding, and label propaga-
tion. Our findings reveal that video diffusion models consis-
tently rank among the top performers, particularly excelling
at modeling temporal dynamics and scene structure. This
observation not only sets them apart from image-based dif-
fusion models but also opens a new direction for advancing
video understanding, offering a fresh alternative to tradi-
tional discriminative pre-training objectives. Interestingly,
we demonstrate that higher-generation performance does
not always correlate with improved performance in down-
stream tasks, highlighting the importance of careful repre-
sentation selection. Overall, our results suggest that video
diffusion models hold substantial promise for video under-
standing by effectively capturing both spatial and temporal
information, positioning them as strong competitors in this
evolving domain.

1. Introduction

Beyond generating high-fidelity images, diffusion mod-
els have achieved significant breakthroughs in visual per-
ception. Their success is largely attributed to the large-
scale vision-language pretaining, which allows them to cap-
ture detailed, object-centric features, and positions them
as strong candidates for tasks such as image segmenta-
tion [81, 87] and classification [41]. Naturally, this raises
a question: Can diffusion models’ success in images extend
to the more complex domain of video understanding?
Video understanding presents unique challenges absent
in the image domain, particularly in capturing temporal dy-
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namics and motion patterns. Unlike image diffusion mod-
els, video diffusion models [5, 75] are inherently designed
to capture such spatial-temporal dynamics, making them
far better suited for these tasks. As illustrated in Figure 1,
where we visualize video representations using K-Means
clustering and three-channel PCA for several widely used
visual foundation models, video diffusion models excel at
capturing motion dynamics — a critical capability that sets
them apart from their image-based counterparts. Addition-
ally, they retain a high-level structured representation of the
visual world, further enhancing their implicit understanding
of object relationships and environmental context. This dual
capability of modeling both motion and structure makes
them strong candidates for video understanding tasks.

To further investigate the effectiveness of video diffu-
sion models in video understanding, we introduce a unified
probing framework to systematically analyze feature repre-
sentations from diffusion models across a range of video
understanding tasks. This framework enables a detailed ex-
amination of the relative strengths and limitations of video
diffusion models, providing practical insights for their op-
timal use. To ensure a comprehensive analysis, our evalua-
tion spans seven models, including both image- and video-
based architectures, as well as non-diffusion [4, 52, 71] and
diffusion-based approaches. In the diffusion category, we
further evaluate both UNet-based [5, 60, 75] and diffusion-
transformer-based techniques [15, 54, 88].

Our study focuses on four key tasks that highlight dif-
ferent aspects of video understanding: (1) action recogni-
tion, a supervised classification task for assessing global
video-level representations; (2) object discovery, an unsu-
pervised segmentation task measuring dense feature qual-
ity; (3) scene understanding, a supervised task to test the
semantic and geometrical awareness; and (4) label propa-
gation, a training-free task evaluating the temporal consis-
tency of features. These tasks provide a comprehensive ex-
amination of the strengths and weaknesses of each model
across various facets of video understanding.

Key insights from our study include:

* Video diffusion models excel at capturing motion dynam-
ics while maintaining a high-level understanding of the
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Figure 1. Video feature visualizations on DAVIS17 [57] dataset. Row 1: K-Means clusters (K=10); Row 2: three-channel PCA visualiza-
tions. Compared to image diffusion, or discriminatively trained models, video diffusion models excel at capturing motion dynamics while
retaining a higher-level structured representation of the video input. These unique characteristics position them as strong candidates for

video understanding.

structure of the visual world, which supports their consis-
tently strong performance.

* These models encode different information at various lay-
ers: early layers focus on abstract, high-level features,
while later layers capture finer details. Fine-tuning only
the most relevant layers enhances adaptation efficiency
with minimal performance loss.

* Surprisingly, greater generative capacity does not always
improve performance in visual perception tasks—earlier
model versions sometimes outperform newer ones in
downstream applications.

Overall, video diffusion models show significant promise

for video understanding, excelling at capturing the dynamic

structure of the visual world and emerging as competitive
solutions in this field.

2. Related Work

Diffusion Models. Inspired by principles of heat and
anisotropic diffusion, diffusion models have emerged as
a powerful class of generative models for image and
video synthesis [56, 78]. Recent advancements have po-
sitioned diffusion models as state-of-the-art across uncon-
ditional [7, 14, 27, 67, 68] and conditional image synthesis

tasks [19, 26, 51, 59, 60, 63, 76, 82, 85]. Notably, Denois-
ing Diffusion Probabilistic Models (DDPMs) [27] intro-
duced the use of neural networks for modeling the denois-
ing process, optimizing with a weighted variational bound.
The Denoising Diffusion Implicit Model (DDIM) [27] en-
hanced this by incorporating a non-Markov sampling strat-
egy to accelerate inference. Stable Diffusion [60] extended
the diffusion-denoising process into the latent space of a
pre-trained autoencoder [37], enabling more efficient large-
scale model training. More recently, Transformer-based
models have been introduced to further scale up training,
achieving superior performance [15, 54].

The extension of diffusion models from image to video
generation [23, 29, 45] gains remarkable achievements, en-
compassing both text-to-video (T2V)[6, 33, 35, 58, 77] and
image-to-video (I2V) generation[21, 50, 74, 86].These ef-
forts largely build upon pre-trained image-level diffusion
models, such as Stable Diffusion [60], by training the addi-
tional video backbone with extra video data [5, 10, 11, 17,
22,28, 75]. Some approaches avoid retraining entirely by
utilizing training-free algorithms for video generation from
image models [66, 80, 83]. Most recently, Sora [8] and
its open-sourced couterparts [40, 88] demonstrated lead-
ing video generation capabilities with the more advanced



architecture of diffusion transformer [54]. Among them,
ModelscopeT2V [75], Stable Video Diffusion (SVD) [5],
and OpenSora [86] have open-sourced their large-scale pre-
trained model which serves as our backbones for this study.
Diffusion Models for Visual Perception. Diffusion mod-
els have also demonstrated strong semantic correspondence
in their feature spaces [25, 70, 84]. This has spurred a line
of research that utilizes diffusion models for visual percep-
tual tasks, through either training diffusion-based models
for specific tasks such as segmentation [53, 81, 87], depth
estimation [20, 64, 65] or open-world novel view synthe-
sis [42]. Other work leverages pre-trained frozen diffusion
models for perceptual learning [24, 36, 44, 49, 70, 84], or
explores their use in data augmentation for discriminative
tasks [9, 16, 47, 72].

Among them, DIFT [70] proposes a general pipeline
to extract features from real images with diffusion mod-
els, which we adopt in our evaluation pipeline. Chen
et al. [12] and Nag et al. [48] leverage diffusion models
for video-related tasks, but they do not leverage a video
diffusion model with spatial-temporal reasoning modules.
GenRec [79] proposes a joint optimization for video gen-
eration and recognition to better facilitate the learning of
each other. VD-IT [89] and REM [1] leverage video diffu-
sion models specifically for referring object segmentation.
Lexicon3D [46] conducted a comprehensive study of vi-
sual foundation models, including diffusion-based ones, on
3D scene understanding. Unlike previous work, this study
addresses the general video understanding with diffusion
models across multiple tasks, each with a distinct focus.

3. Probing Video Understanding with Diffu-
sion Models

3.1. Preliminaries

Latent Diffusion Models. Diffusion models [27] are latent
variable models that learn the data distribution with the in-
verse of a Markov noise process. Latent diffusion models
(LDM) [60] further switch the diffusion-denoising mecha-
nism from RGB space to latent space, which improves the
scalability and enables large-scale training. Concretely, an
encoder £ is trained to map a given image = € X into a spa-
tial latent code z = £(x). A decoder D is then tasked with
reconstructing the input image such that D(€(x)) ~ x.

Considering the clean latent zy ~ ¢(zg), where g(zo) is
the posterior distribution of zy, LDM gradually adds Gaus-
sian noise to zg in the diffusion process:

q(zt|ze—1) = N(ze: V1 = Brze—1, Bed), (D

The denoising process takes inverse operations from the dif-
fusion. The denoised latent at timestep t—1 is estimated via:

po(zi—1]2t) = N(zi—1; po(2e, t), Lo (24, 1)), (2)

where the parameters pg(z,t), Xg(2¢,t) of the Gaussian
distribution are learned by the denoising network >g. As
shown in [27], Xy(z¢,t) has only a marginal effect on the
results, therefore estimating (2, t) becomes the main ob-
jective. A reparameterization is introduced to estimate it:

1 Bt
NG <Zt N
where €p(2¢, 1) is typically a denoising UNet module [61]
or diffusion transformer [54] module. €p(2¢,t) is usually
conditioned on additional inputs, such as texts or image em-
beddings, to steer the denoising trajectory. In Figure 2 (left),
we demonstrate how the extra modality is fused to the latent
space: for UNet-based models, cross-attention modules are
utilized to fuse the features while for DiT-based models, the
additional embedding is fused via Adaln [31] modules to-
gether with the broadcasted self-attention. The final objec-
tive of latent diffusion models is:

/LQ(ZI‘/’ t) =

EG(Ztat)> N €))
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Video Diffusion Models. Video diffusion models gener-
ally share a similar architecture to the 2D diffusion mod-
els. Given a video v = [z%,22,--- | 2™V], a spatial encoder
&V is applied to each frame to map them to the latent code
2t = £(2"), where i is the frame index. We use the nota-
tionz = [21,22, .-, 2IV] for convenience. For the decoder,
usually, a spatio-temporal decoder is applied to enforce the
temporal consistency DY (z) ~ v.

One crucial distinction for video diffusion models is that
they explicitly model spatio-temporal information with the
denoising network, denoted as €. This network is extended
to 3D by either introducing additional temporal attention
modules [5, 73], or replacing the spatial attention modules

with spatio-temporal ones [75, 86].

3.2. Video Understanding Probing Framework

Figure 2 illustrates our unified probing framework. We ex-
tract video representations from the denoising module and
subsequently apply a lightweight task-specific head for var-
ious tasks.

3.2.1. Diffusion Features

We extract video features with diffusion models following
DIFT [70]. The process begins by adding noise at timestep
T to the real video latent (Equation 1), moving it into the
zr distribution. This noisy video latent, along with T, is
then passed to €. Instead of using the final output of eg,
which predicts the noise, we extract features from interme-
diate layer activations that effectively capture the video’s
underlying representations:

Zfeature = ez(n)(zT’ T), )
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Figure 2. The architecture of our probing framework for video understanding using diffusion models. Video feature representations are
extracted from the denoising module, followed by a lightweight task head to produce task-specific annotations. The process of feature
extraction from UNet or DiT models (SD3 [15]) is illustrated on the left. Notice that we ignore the timestep input for simplification.

where (n) indicates the block index. Following DIFT, we
extract the intermediate representations from upsampling
blocks, forming the diffusion features. For features from
image diffusion models, we follow a nearly identical pro-
cess, except that we process the videos frame by frame. Ad-
ditionally, during feature extraction, we introduce a fixed
“null-embedding” as the condition for €j. For language-
based models, this embedding is obtained by passing an
empty prompt to the text encoder. For image-based mod-
els, we use an all-zero conditional image.

3.2.2. Adaptation for Downstream Tasks

After extracting features from diffusion models, we use a
lightweight task head (fewer than 1% of the backbone’s
parameters) to adapt these features for the target tasks, as
demonstrated by the object discovery task in Figure 2. We
detail the specific task heads for our evaluated tasks below.
Action Recognition is the task that aims to predict an action
label for a given video. Following previous practice [4, 71],
we take the averaged feature map and apply a two-layer
MLP, where the hidden dimension is the same as the input
features, to predict the final label.

Object Discovery identifies and tracks dynamic objects
from videos in a self-supervised manner. We adopt the
architecture from MoTok [2] where cross-attention layers
with learnable queries, called slots [43], are trained to group
foreground regions in video with feature-level reconstruc-
tion as the learning signal.

Scene Understanding aims to predict pixel-wise scene
properties, e.g. semantic labels and depth values, for the
given video. Following DINOv2 [52], we directly apply

Model Type  Architecture Dataset Feature Dim  Downsample
DINOv2 [52] Image VIiT-L LVD-142M 1024 14
VideoMAE [71] Video VIiT-L Kinetics400-240k 1024 16
VIEPA [4] Video VIiT-L VideoMix2M 1024 16

SD [60] Image UNet LAION-5B 1280/640 8/16
SD3[15] Image DiT PublicImgs-1B 1536 16
ModelScope [75] Video UNet ‘WebVid-10M 1280/640 8/16
SVD [5] Video UNet LVD-152M 1280/640 8/16
Open-Sora Zheng et al. [88] | Video DiT Mix-210M 288 8

Table 1. Details of the pretrained visual foundation models we
used for our video understanding evaluation.

a two-layer MLP on top of the feature map and interpolate
them to the original resolution to predict the labels.

Label Propagation is a training-free task where instance
masks or keypoints from an initial frame are propagated
to each subsequent frame in a video. Rather than predict-
ing new labels, label propagation transfers the initial labels
frame-by-frame, leveraging the continuity of appearance
across frames. As in prior methods [32, 70], we achieve
this by using a k-nearest neighbors (k-NN) search across a
feature queue containing the initial frame and the most re-
cent m frames, thus no specialized task head is required.

4. Experimental Evaluations
4.1. Evaluation Settings

Baseline Models. We perform our video understand-
ing analysis with seven visual foundation models. DI-
NOV2 [52] is a contrastive learning-based image-level foun-
dation model. VJEPA [4] and VideoMAE [71] learn com-
prehensive video representations by reconstructing from
masked video patches. Stable Diffusion (SD)[60] and
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Figure 3. Representative visual comparisons between the results of video diffusion models and other foundation models. Top: Video
diffusion models capture motion dynamics more effectively than image-based models; Bottom: Video diffusion models demonstrate a
stronger understanding of world structure compared to conventional video foundation models. This balance of dynamic and structural

comprehension enables them to consistently perform at a high level.

Stable Diffusion 3 (SD3)[15] are text-to-image diffusion
model with UNet [61] and DiT [54] as denoising back-
bones. ModelScopeT2V [75] and Stable Video Diffusion
(SVD) are video diffusion models that take SD as the initial-
ization and further fine-tune on large-scale video data. Ad-
ditionally, we include the DiT-based video diffusion model,
Open-Sora [88], in the action recognition evaluation but ex-
clude it from other tasks due to its inability to produce pre-
cise patch-wise representations. Detailed configurations of
these feature extractors are provided in Table 1.

Datasets and Metrics. We evaluate action recognition
recognition with top 1 and top 5 accuracy on UCF101 [69]
and HMDB51 [38]. We study the object discovery task
on MOVi-C and MOVi-E [18], and take foreground ad-
just random index (FG. ARI) and video mean best over-

lap (mBO) as metrics. We evaluate the scene understand-
ing task with semantic segmentation and depth estimation
on CityScapes [13], and take mean interaction over unions
(mlIoU) and mean L5 error (mErr), for the two tasks respec-
tively. We conduct the label propagation for video object
segmentation on DAVIS17 [57] and keypoint estimation on
JHMDB [34] following the same setup as DIFT [70]. We re-
port region-based similarity J and contour-based accuracy
F [55] for DAVIS17, and percentage of correct keypoints
(PCK) for JHMDB.

Key Implementation Details. We use the noise level 50
by default, with a corresponding timestep T=50 (for SD,
ModelScope, and SVD) or T=16 (for SD3 and Open-Sora).
For the layer index, we design the use of block index 1 (for
SD, ModelScope, and SVD) and layer index 12 (for SD3



Backbone UCF101 HMDB51 MOVi-C MOVi-E CityScape DAVIS17 JHMDB
Topl Acc  Top 5 Acc | Topl Acc  Top 5 Acc || FG.LART mBO | FG.ARI  mBO || mloU(SS) mErr(DE) TIm Fm J&F, | PCK@0.1 PCK@0.2

DINOv2 89.8 97.8 61.6 89.6 55.6 29.2 71.9 26.3 53.6 4.30 64.8 69.1 67.0 50.42 78.71
VideoMAE 87.9 97.9 55.4 83.4 245 143 32.7 14.1 37.8 573 30,5 375 34.0 32.51 59.30
VIEPA 92.1 98.5 66.5 923 31.8 18.6 49.9 18.0 41.3 5.27 523  58.0 55.1 37.55 70.31
SD 63.5 86.1 33.0 68.1 40.6 24.8 63.4 26.9 44.5 497 67.8 74.6 71.2 60.48 80.77
SD3 60.9 85.8 324 62.1 433 26.3 65.1 28.6 46.0 5.09 ‘ 485 548 51.6 38.17 65.89
ModelScope 80.6 94.9 50.7 80.2 413 25.1 63.7 27.5 49.3 3.98 653 724 68.4 60.90 82.83
SVD 92.3 98.6 63.8 89.7 442 26.7 65.4 29.4 48.1 4.68 ‘ 59.8 677 63.8 60.52 81.84
Open-Sora | 473 759 ] 221 54.8 B -] [ - - -]

Table 2. Quantitative evaluations on the four evaluated tasks. The top two results are marked in green and yellow respectively. Video

diffusion models provide semantic- and geometric-aware representations that contain both high-level abstractions and detailed information,
positioning them as unique and competitive candidates for video understanding.

and Open-Sora) for action recognition. For the other tasks,
we use block index 2 and layer index 24 respectively. We
use batch size 12 with 4 NVIDIA-A100 GPUs running in
parallel for all the backbones except ModelScope. We use
batch size 6 with 8 GPUs in parallel for ModelScipe to fit
its CUDA requirement.

More details about datasets, model implementation, and
training configurations are included in the supplementary
material.

4.2. Main Results

We show the quantitative results for our main evaluation of
the four tasks in Table 2, and representative visual compar-
isons in Figure 3. More visualizations are included in the
supplementary material.

Comparisons between ModelScope and SVD. For the fol-
lowing discussions, we treat ModelScope and SVD as vari-
ants of the same “video diffusion model” category, despite
differences in their model type (Text-to-Video vs. Image-
to-Video), for which we use unconditional versions to min-
imize conditioning effects. While their performance varies
across tasks — likely due to differences in training data
and fine-tuning strategies (ModelScope fine-tunes only tem-
poral modules, while SVD uses full fine-tuning) — these
variations make it challenging to draw universal conclu-
sions based on specific tasks. Given the lack of a stan-
dardized training strategy, we focus on their shared founda-
tions instead: both models are based on SD with additional
video training, which enables us to discuss their common
strengths and limitations in video understanding.

Overall Conclusions. Across all four tasks, video diffu-
sion models consistently rank among the top performers,
highlighting their robustness and adaptability in video un-
derstanding. As illustrated by the visual comparisons in
Figure 3, video diffusion models capture motion dynam-
ics more effectively than image-based models and demon-
strate a stronger understanding of world structure compared
to conventional video foundation models. This balance of
dynamic and structural comprehension enables them to con-
sistently perform at a high level.

Action Recognition. Surprisingly, SVD achieves the
highest performance on UCF101 and ranks second on
HMDBS51, consistently outperforming both image diffusion
models and the conventional DINOv2 and VideoMAE en-
coders. This result highlights the ability of well-trained
video diffusion models to capture global-level video rep-
resentations effectively. However, Open-Sora and SD3,
which use DiT architectures, exhibit suboptimal perfor-
mance. A potential reason may lie in how DiT models fuse
multi-modal features, suggesting an open research chal-
lenge: developing improved feature extraction techniques
tailored for DiT-based diffusion models.

Object Discovery. Overall DINOv2 achieves the high-
est performance among all models, demonstrating its su-
perior object-awareness. However, it is worth noticing that
video diffusion models outperform in terms of mBO on the
MOVi-E dataset which involves more complex ego and ob-
ject motion. This suggests that diffusion models are partic-
ularly effective at identifying and tracking objects in chal-
lenging motion scenarios, making them especially useful
for tasks requiring precise localization and tracking. Visual
comparisons in Figure 3 provide further evidence where
SVD precisely tracks objects with complicated motion.

Scene Understanding. ModelScope and DINOv2 emerge
as the top performers in these tasks, with DINOv2 excelling
in semantic understanding and ModelScope showing supe-
rior performance in depth estimation. For ModelScope, we
hypothesize that its success stems from its ability to lever-
age motion information, which inherently aids in under-
standing depth.

Label Propagation. On DAVIS17, video diffusion mod-
els generally lag behind their image-based counterparts.
We hypothesize that this is because video diffusion mod-
els learn detailed representations of moving objects (refer
to Figure 1) but struggle to differentiate static objects from
the background, a key challenge in video object segmenta-
tion (VOS). In contrast, on the JHMDB dataset, where pose
estimation focuses solely on a single moving object, video
diffusion models demonstrate their strengths.

In summary, video diffusion models provide semantic-
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Figure 4. Comparison between generation ability and downstream task performance on SD and SVD series. The later SVD checkpoint
consistently improves performance across all tasks while the 1- series SD models generally outperform the 2- series models. These results
indicate that greater generative capacity does not necessarily translate to improved performance in visual perception tasks.

and geometric-aware representations that contain both high-
level abstractions and detailed information, positioning
them as unique and competitive candidates for video un-
derstanding.

4.3. Guidelines for Video Diffusion Adoption
4.3.1. Optimal Use of Video Diffusion Models

In our main evaluation, we use frozen video diffusion repre-
sentations with fixed noise levels and layer indices. In this
section, we investigate how to better adapt these represen-
tations for video understanding by providing guidance on
layer selection and fine-tuning strategies.

Noise Levels and Block Indices. We examine the ef-
fects of noise level selection and block indices in SVD for
action recognition on HMDBS51 and label propagation on
DAVIS17, as summarized in Table 3. The results suggest
that noise level plays a relatively smaller and task-specific
role compared to block indices. Generally, a small amount
of noise (e.g., corresponding to 7' = 50) yields strong
results. In contrast, block indices significantly influence
downstream task performance: features from earlier blocks
encode abstract, high-level information, making them ideal
for classification tasks, while features from later blocks cap-
ture finer details, benefiting dense prediction tasks. These
findings are consistent with observations from image diffu-
sion models, as reported by Tang et al. [70].

Fine-Tuning Video Diffusion Models. For certain video
understanding tasks, fine-tuning the backbone is essential
and typically results in improved performance. To ex-
plore the impact and strategies of fine-tuning video diffu-
sion models for perception tasks, we fine-tune the SVD de-
noising UNet on HMDBS51 and MOVi-E. The results are
summarized in Table 4 (first two rows). Notably, for object
discovery, we slightly modify the baseline architecture [2],
with details provided in the supplementary material. As a
result, the reported FG.ARI score for the frozen model dif-
fers from that in Table 2.

Notably, by comparing the change of parameters of all
the modules, we find that the last in-use upsampling block
(i.e. block index 1 for action recognition and block index 2

Noise Block HMDBS51 DAVIS17
Level Index |"Topl Acc Top5 Acc | Jm Fm J&EFpm
0 1 60.3 88.0 521 449 485
50 1 63.8 89.7 51.1 426 469
100 1 63.9 89.4 503 416 460
200 1 62.6 88.7 502 413 458
0 2 31.1 64.0 60.8 68.0 644
50 2 337 66.9 59.8 677 638
100 2 35.4 68.0 59.6 672 634
200 2 32.8 66.8 59.1 645 628

Table 3. Ablation on noise level selection and block index of
SVD on HMDBS51 and DAVIS17. Compared to noise level, the
block index has a significant impact on downstream task per-
formance. Features from earlier blocks capture more abstract,
high-level information, while features from later blocks are more
object-oriented.

for object discovery) exhibits the highest sensitivity to pa-
rameter changes, highlighting their critical role in enhanc-
ing task performance. Inspired by previous efficient diffu-
sion fine-tuning approaches [3, 39, 62], we construct two
fine-tuning variants: one incorporates LoRA [30] adapta-
tion layers in all cross-attention blocks, while the other fine-
tune only the most sensitive upsampling block. The results
for these two variants are reported in Table 4 (last two rows).
These findings demonstrate that efficient fine-tuning strate-
gies can significantly enhance performance while keeping
training costs reasonable, offering practical guidance for
optimizing video diffusion models.

4.3.2. Generation V.S. Perception

In this section, we explore an intriguing question: does a
diffusion model with superior generation capacity inher-
ently perform better in visual perception tasks? While
we could evaluate the generative capacity of different dif-
fusion models directly, this approach is challenging due
to their diverse conditioning mechanisms —some are text-
conditioned, others image-conditioned — and their applica-
tion across both image and video generation. Instead, we
adopt an alternative strategy: comparing the performance of
different checkpoints of the same model, under the assump-



Strategy HMDB51 ' MOVi-E '
Topl Acc Mem. Time | FG.ARI Mem. Time
Frozen 63.8 1.0x 1.0x 66.1 1.0x 1.0x
Full 68.3 26 x 23 x 69.2 27 x  25x
LoRA 66.9 1.1 x L17x 67.0 12 x 1.7x
Sensitive 67.1 1.3x 1.8x 68.1 14x  19x

Table 4. Performance and training cost for finetuning SVD UNet.
“Sensitive” denotes only fine-tuning the most sensitive UNet block
(the last in-use upsampling block). While finetuning the diffusion
backbone yields performance improvements, it comes with signif-
icantly higher computational costs. Using an efficient finetuning
strategy by only tweaking the most sensitive layers leads to an ef-
fective.

tion that later versions exhibit improved generative capacity.

We use SD and SVD as backbone models and evaluate
four versions of SD (v1.4, 1.5, 2.0, and 2.1) alongside two
versions of SVD (v1 and v1.1) across the four tasks, with re-
sults summarized in Figure 4. For SVD, the later checkpoint
consistently improves performance across all tasks, aligning
with its enhanced generative capacity. However, for SD, the
1-series models generally outperform the 2-series models,
though the optimal version varies by task. This discrepancy
may stem from differences in the scale and composition of
training data across versions.

Overall, these results suggest that greater generative ca-
pacity does not necessarily translate to improved perfor-
mance in visual perception tasks, indicating that there is no
universal metric for selecting a representation exists as of
yet.

4.4. Discussions

Inference Cost. We report the inference time and memory
usage for a single batch of size [6, 256, 256] on the MOVi-
E dataset, using an NVIDIA A100 GPU in Table 5. The
baseline model, DINOv2, has an inference time of 0.224
seconds and consumes 2.6 GB of GPU memory. Notably,
the memory consumption for ModelScope is an outlier, due
to the lack of optimization in its public implementation.
In general, diffusion-based and video-based models require
more computational resources, though these costs remain
acceptable. The exception is SD3, which employs a DiT-
based architecture. This observation is consistent with our
earlier conclusions and highlights the need to develop more
efficient and effective feature extraction methods for DiT-
based models.

Limitations of Video Diffusion Representations. We
show two typical limitations for video diffusion representa-
tions on label propagation in Figure 5: difficulty in handling
occlusion among instances of the same semantic category,
and challenges with distinguishing nearby objects that share
similar motion.

Model ‘ DINOv2 VideoMAE VJEPA SD SD3 ModelScope SVD
Memory 1.0x 1.7 x 1.1x 1.8x  4.6x 8.3x 2.7x
Inf. time 1.0x 2.1 x 1.7x 1.1x 33x 2.0x 2.1x

Table 5. Time and Memory Consumptions for all the compared
models. Results are tested on the MOVi-E dataset with a single
batch with dimensions [6, 256, 256]. Diffusion-based and video-
based models require more computational resources but the costs
remain acceptable.

Figure 5. Limitations of Video Diffusion Representations: diffi-
culty in handling occlusion among instances of the same semantic
category, and challenges with distinguishing nearby objects that
share similar motion.

5. Conclusion and Future Work

This paper showcases that video diffusion models offer
a powerful approach to video understanding, excelling in
capturing motion dynamics and high-level structural repre-
sentations. By systematically analyzing their performance
across multiple tasks, we highlight their robustness, adapt-
ability, and the distinct advantages they bring to video per-
ception. These models stand out for their unique balance of
dynamic and structural comprehension, positioning them as
promising tools for advancing video understanding. More-
over, our findings provide actionable insights into how their
representations can be optimized through careful layer se-
lection and fine-tuning strategies, paving the way for more
efficient and effective utilization of video diffusion models
in various applications.

Two feasible future work of this study include: (1) de-
signing a more advanced feature extraction pipeline with
newly introduced DiT-based models. (2) Exploring other
ways of leveraging video diffusion models beyond merely
using them as encoders [1, 79].

Social Impact. By pushing the boundaries of what is pos-
sible with video diffusion models, the findings in this paper
can further inspire future explorations with video diffusion
models in both generative and video analysis aspects.
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