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Abstract

Multimodal large language models (MLLMs) have shown
impressive performance on tasks requiring integrated vi-
sual and textual understanding. A key factor in their suc-
cess is the model’s ability to accurately recognize and un-
derstand visual elements. While recent advancements fo-
cus on enhancing vision encoders to produce richer visual
tokens, an often overlooked aspect is how effectively the
underlying language model can further process these vi-
sual tokens. Through a vision-centric analysis, we find that
the intermediate visual representations of MLLMs perform
poorly on semantic and geometric understanding tasks,
even worse than their standalone vision encoders. More
importantly, our analysis reveals that the quality of visual
tokens of MLLMs begins to degrade even before being pro-
cessed by the language model, indicating inherent flaws
in the current MLLM designs. To address this, we in-
troduce a self-distillation approach to refine the visual to-
kens of MLLMs through a reverse multimodal projector, en-
hancing alignment with original visual features. Extensive
evaluations confirm that our method significantly improves
MLLMs’ performance on perception-oriented benchmarks
(e.g., SEED, Real-WorldQA, CV-Bench) while maintaining
overall performance on general-purpose benchmarks (e.g.,
MMMU, ChartQA, MMB), and our method generalizes ef-
fectively across different model variants and data scales.

1. Introduction

Multimodal large language models (MLLMs) [26, 31, 46]
have achieved remarkable success on tasks requiring inte-
grated understanding and reasoning across visual and tex-
tual inputs. Undoubtedly, a key factor in their success is
their visual recognition capability, as MLLMs need to accu-
rately identify objects, scenes, and other elements in visual
inputs to generate relevant and accurate responses.

To enhance the recognition capability of MLLMs and
boost their overall performance, recent approaches primar-
ily focus on using more powerful vision encoders to cre-
ate more informative visual tokens, which are then passed
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Figure 1. Top: Conventional VQA-based MLLM evaluation: do
text tokens match the correct answer? Bottom: Our proposed
evaluation: how well can visual tokens perform on downstream
computer vision tasks?

to the underlying large language models (LLM) to produce
text outputs [26, 46]. While a stronger vision encoder can
indeed yield more effective MLLMs [46], an overlooked
question is: how effectively does the underlying LLM pro-
cess these visual tokens? Ideally, the LLM within MLLMs
should be capable of further enhancing the quality of these
visual tokens. However, there is currently no formal study
to confirm or validate this hypothesis.

To explore this, we conduct a targeted analysis (details
in Section 2) to examine how effectively MLLMs can pro-
cess the visual tokens given by the vision encoders. Un-
like conventional MLLM evaluation that measures model
performance through text responses in the form of visual
question answering (VQA), we propose to directly evalu-
ate the quality of visual tokens within MLLMs as shown in
Figure 2. Specifically, we extract the visual tokens from
different MLLM layers and treat them as the intermedi-
ate visual representations of the MLLM. Then following
the well-established practice in computer vision [14, 15],
we append lightweight probing heads after these represen-
tations to measure their performance on downstream com-
puter vision tasks. By decoupling the evaluation of visual
recognition from the language outputs, this approach offers
a more straightforward and direct assessment of MLLMs



Figure 2. Qualitative comparisons between the intermediate visual
representations of a MLLM and its visual encoder, CLIP [41]. Sur-
prisingly, we find that these visual representations perform poorly
on semantic segmentation and depth estimation — even underper-
forming its vision encoder alone.

from a vision-centric perspective.

We conduct the analysis on two representative vision
tasks: semantic segmentation on ADE20K [65] and depth
estimation on CityScapes [8]. We find that the intermediate
visual representations of MLLMs struggle with both tasks,
even underperforming the original vision encoder they are
using. More critically, we identify that the quality of visual
tokens already degrades even before they are processed
by the LLM. These unexpected findings suggest that cur-
rent MLLM designs have inherent flaws that compromise
the quality of visual tokens, which in turn would affect the
accuracy of visually dependent language responses. This
calls for methods to enhance the visual tokens of MLLM to
achieve better overall performance.

Therefore, we propose a self-distillation loss to supervise
the visual tokens in MLLMs and improve their quality. As
illustrated in Figure 3, common MLLM architectures typi-
cally consist of a vision encoder to tokenize images, a mul-
timodal projector to align visual tokens with the text token
space, and a language model to process cross-modality to-
kens [31, 46, 54]. We propose incorporating an additional
reverse multimodal projector to map visual tokens back into
the original visual feature space and apply a cosine similar-
ity loss to enforce the alignment between these tokens and
the original visual features. This design encourages visual
tokens to capture richer visual information of the input im-
age, thereby enhancing MLLMs’ visual understanding ca-
pability and improving the accuracy of language responses
on vision-language tasks. Extensive experiments have vali-
dated our approach:

Visual Tokens ‘ CLIP ‘ MM Projector (LO)  L10 L20 L30 L40

mloU@ADE20K (1) | 32.02 25.51 2832 29.03 2840 27.04
mErr@CityScape (}) | 4.92 6.43 595 562 558 542

Table 1. Performance of visual tokens on downstream vision tasks.
MLLM visual tokens perform poorly on semantic and geometric
understanding, even worse than its own vision encoder. This even-
tually will hinder the language responses that rely on these visual
tokens to understand the image.

¢ Adding the self-distillation loss consistently improves
performance on perception-oriented benchmarks (e.g.,
SEED, Real-WorldQA, CV-Bench) and achieves state-
of-the-art results, without compromising performance on
general-purpose benchmarks (e.g., MMMU, ChartQA,
MMB).

¢ Qur approach generalizes well across model variants and
scales effectively with different data scales.

* Leveraging additional visual expert models as sources
for distillation further enhances performance on various
MLLM benchmarks.

2. Analysis of Visual Tokens in MLLMs

We propose a vision-centric analysis framework to analyze
the visual tokens in MLLMs as illustrated in Figure 1. Dif-
ferent from conventional VQA-based MLLM evaluation,
our approach directly examines MLLMs’ visual recognition
capability based on the performance of downstream vision
tasks of their intermediate visual tokens or representations.

Setup. We conduct the analysis with a pre-trained MLLM
model [32], which uses CLIP as the vision encoder [41]
and Vicuna-7B [64] as the base language model. We con-
sider two representative visual understanding tasks: seman-
tic segmentation on ADE20K [65] and depth estimation
on CityScapes [8]. Following DINOv2 [38], we attach a
lightweight task head, i.e., a two-layer MLP, to the visual
tokens to the predict the dense segmentation map or depth
map. The final output is interpolated to the original resolu-
tion for evaluation.

We expect the visual tokens to perform well on the two
vision tasks as they are conceptually similar to instructing
MLLMs to describe each pixel in the image sequentially in
a raster scan order. However, since the pre-trained MLLM
may not have been trained to produce this type of language
response and might not follow such instructions, we have
introduced two learnable task tokens. These tokens act as
soft prompts to guide the model to perform these specific
downstream tasks [22].

Our experiments show that adding learnable task tokens
is helpful but further increasing the number of task tokens
does not provide further gain on vision tasks. During our
evaluation, only the task head and the task tokens are being
optimized. All other model weights are frozen.



Our analysis first compares the final visual tokens from
the MLLM (output of the last self-attention layer) against
those of its visual encoder, i.e., CLIP. We include qualita-
tive and quantitative results in Figure 2 and Table | (second
and final columns, respectively). Then, we extend the com-
parison to visual tokens from different MLLM layers (as
shown in other columns of Table 1), including outputs from
the multimodal projector [31], which are the input to the
LLM and can be considered as features from layer 0.

Key Observations. (1) Visual tokens or representations in
MLLMs even underperform their own vision encoder on
downstream vision tasks. Qualitatively, MLLMs show lim-
ited semantic comprehension and often produce noisy ob-
ject boundaries. (2) The output of the multimodal projec-
tor has the worst performance on vision tasks, suggesting
that visual information loss already begins at the input level
of the LLM, limiting its ability to accurately recognize and
understand the visual data. (3) The quality of visual tokens
keeps improving as we go deeper into the LLM. LLMs can
partially remediate the quality drop that happens at the pro-
jector layer.

Visual Tokens are Important in MLLMs. Although the
primary goal of MLLMs often centers on language-based
reasoning, robust visual representations are equally crucial,
particularly for perception-oriented tasks. Enhanced visual
representations allow MLLMs to capture fine-grained de-
tails that directly support language outputs, especially in
complex scenarios requiring spatial or compositional under-
standing. Motivated by these observations, we propose an
approach to preserve the information within visual tokens,
thereby reinforcing the foundational visual-language rea-
soning capabilities of MLLMs and enhancing their overall
performance across multiple tasks, particularly for vision-
centric ones.

In the supplementary material, we extend this analysis to
other stronger MLLMs, demonstrating the robustness of the
conclusions drawn in this section.

3. Method

In this section, we begin with an overview of the founda-
tional LLaVA-like architecture [31] used for MLLMs. We
then present the details of our proposed self-distillation ap-
proach, as illustrated in Figure 3.

3.1. Preliminaries

The goal of an MLLM is to generate a textual response y
based on multi-modal inputs, typically an image-question
pair (z,c) [31]:

y = fmLm(z, ¢). (D

As shown in Figure 3 (Loop in black), a typical MLLM
architecture consists of the following main components: a

vision encoder to extract image features, a multimodal pro-
jector to map visual features into the language space or text
token space, a text tokenizer to create text token embed-
dings, and a large language model (LLM) to integrate mul-
timodal features and produce the final response. To process
visual information, the MLLM first extracts features from
the input image x and projects these features into the lan-
guage space, which are then passed to the LLM as input
visual tokens:

Tinput = emm(gimg(x))7 (2)

where £ is the vision encoder, typically a frozen CLIP-
based model [41, 61], and 6y, represents the multimodal
projector, often implemented as an MLP or Perceiver [18].

Next, the MLLM takes both the text and visual tokens
as input, processes them through several self-attention lay-
ers [49], and generates output tokens iteratively. Finally, the
tokenizer is used to decode the output tokens into the final
textual response:

y = D(Yrm(Tinpus, £i(€))), 3)

where 1y denotes the LLM network, &; represents the
text tokenizer encoder and D is the tokenizer decoder.

Following the approach in LLaVA [31], MLLMs are typ-
ically trained using a two-stage process. In the first stage,
called the pre-training stage, only the multimodal projec-
tor is fine-tuned to align visual representations with the
language space. In the second stage, known as instruc-
tion tuning, all components except for the vision encoder
and tokenizer are further fine-tuned. We adopt this training
schedule in our experiments. For both stages, the MLLM is
trained with a next-token prediction objective:

N
Lim (Omms Yrim) = = Y 10g P(yilyi—1, Tinpu, E(c)),

i=1

“)

where y; denotes the i‘" token in the target response y, N

is the total number of tokens in the response, and y.;_; are

the preceding tokens before y;. This objective calculates

the negative log-likelihood of the correct next token y; con-

ditioned on the previous text tokens and multimodal input.

Note that this objective is only applied to 6, during the
pre-training stage.

3.2. Visual Knowledge Distillation for MLLMs

To enhance the visual representations within MLLMs, we
propose a self-distillation objective designed to preserve the
richness of visual token information after processing by the
LLM. Specifically, we introduce a reverse multimodal pro-
jector, applied to the output of the n*"* self-attention layer,
to map the visual representations back to the original visual
feature space:

Zioken = Grmm (1/)£7[i])\4(xinput7 81(0))) , )
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Figure 3. Architecture of our proposed self-distillation algorithm. Loop marked in black: a general architecture of MLLM; Loop marked
in red: the proposed self-distillation objective that preserves the information of visual tokens. Our method enhances the vision-language
reasoning capacity of MLLMSs by providing a more informative and robust visual token representation.

where 0, denotes the reverse multimodal projector, which
mirrors the architecture of 6, except for a difference in
hidden dimensions. Here, wfﬁfv[ represents the intermediate
visual representation after the nt" self-attention layer in the
LLM. We then compute the cosine similarity between this
projected visual representation and the initial representation
extracted by the vision encoder. This similarity serves as
the self-distillation loss, used to update the weights of the
multimodal and reverse multimodal projectors:

Ttoken * gimg (-77)

‘Cdis ill(ammy er'mm) =1- .
t [Ztokenl| - [|Eimg () |

(6)

This self-distillation loss encourages the multimodal pro-
jector and LLM to retain critical information from the visual
data. By incorporating the reverse multimodal projector and
using cosine similarity as the objective, we also prevent the
model from converging to trivial solutions.

Notably, this method does not require using visual fea-
tures from the MLLM’s native vision encoder alone; it is
compatible with external visual expert models or a mixture
of experts (MoE). In the case of M visual expert models,
the self-distillation loss can be adapted as follows:

Lgisein (Omm s Ormm) = i 1 _ Token " Ei(@) o
, ”xtoken” . ||51(£17)|| ’

i=1

where &; represents the i'" visual expert model, each of
which may include its own vision encoder. We show the
broader application of our approach with external visual ex-
pert models as sources of distillations in Section 4.4.

The final training objective, incorporating the proposed
self-distillation loss, is:

L = Lum + aLaistin, ®)

where « is a balancing factor between the two objectives.

4. Experimental Evaluations
4.1. Setup

Our Models. Our primary model uses SigLIP [61] as the
vision encoder and QWen2-7B [55] as the LLM backbone.
Our full datamix contains ~2M image-text pairs for pre-
training and ~6M samples for instruction tuning. This
model requires approximately 8 hours for pre-training and
30 hours for instruction tuning on 64 A100 GPUs.

In the ablation study, we also consider a reduced ver-
sion of the full dataset consisting of ~600K samples for
pre-training and ~700K samples for instruction-tuning and
a variant of the model architecture with CLIP [41] as the
vision encoder encoder and Vicuna-7B [64] as the LLM.

Compared Methods. We focus on comparison with mid-
size models (<10B parameters). Competitive compared
models include LLaVA1.5 [32], MiniGemini-HD-8B [29],
LLaVA-NeXT-8B [33], Cambrian-8B [46], LLaVA-One-
Vision-7B [26], InterVL-8B [7], BLIP3 [54], QWen2-VL-
7B [50], LLaMA3.2-11B [9], and Grok-1.5 [52]. For these
models, we use the performance metrics reported in their
original papers.

Benchmarks. We conduct evaluations on two groups
of benchmarks: perception-oriented benchmarks and gen-
eral benchmarks. For perception-oriented ones, we con-
sider SEED [24], Real-WorldQA [52], CV-bench?? [46],
MMVP [47], MME [10] and GQA [16]. For MME,
we only focus on their perception tasks and denote this
benchmark as MMEP. For other benchmarks, we include
MMB [35] and Llava-bench [31] for general purpose eval-
uation, MMMU [60] and AI2D [19] for accessing model’s



Model | Encoder LM SEED Real-WorldQA  CV-Bench?”? MMVP MME?” GQA
LLaVA-1.5 [32] CLIP VICUNA | 58.6 - - - 1510.7 620
MiniGemini-HD-8B [29] CLIP LLaMA3 | 732 62.1 62.2 18.7 1606.0 64.5
LLaVA-NeXT-8B [33] CLIP LLaMA3 | 72.7 60.1 62.2 38.7 1603.7 65.2
Cambrian-8B [46] MoE LLaMA3 | 74.7 64.2 72.3 51.3 1547.1  64.6
LLaVA-One-Vision-7B [26] SigLIP QWen2 75.4 66.3 - - 1580.0 -
InternVL-8B [7] Pretrain Pretrain 76.2 64.4 - - - -
BLIP3 [54] SigLIP Pretrain 72.2 60.5 - - 1510.7 620
QWen2-VL-7B [50] Pretrain QWen2 - 70.1 - - - -
Grok-1.5 [52] Unknown Unknown - 68.7 - - - -
Baseline SigLIP QWen2 75.1 65.9 72.8 41.2 1601.6  65.2
Baseline™ (Ours) SigLIP QWen2 76.2 66.5 73.9 43.0 1629.7  65.7

Table 2. Evaluation of our methods on perception-oriented MLLM evaluation benchmarks. The top two results are marked in bold and
underline, respectively. By applying our proposed self-distillation objective, we demonstrated improvements on all the perception-related
benchmarks consistently, demonstrating the effectiveness of our proposed method.

Model ‘ Encoder LM ‘ MMMU TextVQA ChartQA LLaVA-bench MMB AI2D
LLaVA-1.5 [32] CLIP VICUNA - 58.2 - 65.4 64.3 -

MiniGemini-HD-8B [29] CLIP LLaMA3 37.3 70.2 59.1 - 72.7 73.5
LLaVA-NeXT-8B [33] CLIP LLaMA3 41.7 64.6 69.5 81.6 72.1 71.6
Cambrian-8B [46] MoE LLaMA3 42.7 71.7 73.3 - 75.9 73.0
LLaVA-One-Vision-7B [26] SigLIP QWen2 48.8 - 80.0 67.8 80.8 81.4
InternVL-8B [7] Pretrain Pretrain 51.8 77.4 83.3 - 81.7 83.8
BLIP3 [54] SigLIP Pretrain 41.1 71.0 - - 76.8 -

QWen2-VL-7B [50] Pretrain QWen2 54.1 84.3 83.0 - 83.0 83.0
Grok-1.5 [52] Unknown Unknown 53.6 78.1 76.1 - - 88.3
LLaMA3.2-11B [9] Pretrain  LLaMA3 50.7 - 834 - - 91.1
Baseline SigLIP QWen2 43.1 72.3 74.0 67.5 78.1 79.1
Baselinet (Ours) SigLIP QWen2 43.6 71.8 72.1 69.2 78.3 79.6

Table 3. Core evaluation on general-purpose MLLM benchmarks. The top two results are marked in bold and underline, respectively. With
the additional self-distillation objective, we achieve comparable performance compared with our primary baseline models, verifying the

general application of our method in MLLM training and finetuning.

knowledge, TextVQA [44] and ChartVQA [36] for OCR
understanding.

Additional details on our baseline configurations, eval-
uation benchmarks, compared models, and implementation
are provided in the supplementary materials.

4.2. Main Results

We present the results for perception-oriented and general-
purpose benchmarks in Table 2 and 3, respectively. Our
primary baseline model achieves performance on par with
other state-of-the-art models. The success of our method
applied to this strong baseline model reinforces the impor-
tance of high-quality visual representations within MLLMs.

Perception-Oriented Benchmarks. Our proposed self-
distillation approach consistently enhances model perfor-
mance on perception-oriented benchmarks compared to the
baseline model. Notably, on the MME? benchmark, our

model achieves state-of-the-art performance for mid-sized
vision language models, underscoring the effectiveness of
self-distillation in enriching visual representations. These
results provide strong evidence for our hypothesis that ro-
bust visual representations are critical and that more infor-
mative visual tokens directly improve the performance of
MLLMs on vision-centric tasks.

General MLLM Benchmarks. Interestingly, our model
also demonstrates a modest improvement on some general-
purpose benchmarks, though the performance gap is less
pronounced than for vision-centric benchmarks. This find-
ing suggests that enhanced visual representations not only
benefit recognition tasks but also positively influence the
core visual-language reasoning capabilities of MLLMs.
Thus, while the primary advantage of our approach lies in
vision-centric applications, the benefits extend to broader
VLM tasks as well.



Stagel Stage2 « | SEED Real-WorldQA  CV-Bench?” MMVP MME?” GQA
X X - 64.4 58.2 60.4 37.4 15358 626
v/ X 0.1 | 65.8 58.9 61.2 38.0 15746 62.8
v X 1.0 | 64.7 58.3 60.8 37.4 15457  63.1
v X 50 | 60.1 56.1 58.7 37.0 1460.7  60.8
v/ v/ 0.1 | 66.2 59.1 61.6 386 15780 63.5
v/ v/ 1.0 | 659 58.9 61.8 375 15682  63.0

Table 4. Recipe tuning with our proposed method. Results are obtained with SigL.IP + QWen2 on the reduced data mix. Compared with
the baseline version, all the versions obtained enhanced performances on all the benchmarks. Adding our loss at both stages yields the

overall best performance.

Encoder LLM ‘Our Loss Data

| SEED Real-World QA CV-Bench?”

MMVP MME” GQA

SigLIP  QWen2 X Full 75.1
SigLIP  QWen2 v Full 75.1
CLIP Vicuna X Reduced | 56.5
CLIP Vicuna v Reduced | 59.3
SigLIP  QWen2 X Reduced | 64.4
SigLIP QWen2 v Reduced | 66.2

65.9 72.8 412 1601.6  65.2
65.9 72.8 41.2 1601.6  65.2
54.8 60.1 32.1 14645 61.2
55.7 60.9 335 1529.0 624
58.2 60.4 374 1535.8  62.6
59.1 61.6 38.6 1578.0  63.5

Table 5. Ablation study on different training data sources and architecture variants. Our method consistently boosts the performance of
different variants regardless of the choice of components and the scale of training data, showcasing the robustness and effectiveness of our

method.

Layerindex | SEED Real-WorldQA  CV-Bench?” MMVP MME” GQA

‘ 64.4 58.2 60.4 374 15358  62.6
7 64.7 58.4 60.7 37.2 15372 62.6
14 65.1 589 61.0 38.1 1565.7  63.0
21 65.9 582 60.5 37.6 1582.3  64.1
28 ‘ 66.2 59.1 61.6 38.6 1578.0  63.5

Table 6. Ablation study on applying our loss on different MLLM
layers. Recipe tuning with our proposed method. Results are ob-
tained with SigLIP + QWen2 on the reduced data mix. Applying
our novel objective in all chosen layers can consistently boost the
performance, while applying it at a later layer yields better perfor-
mance.

4.3. Ablation Study

Due to the limited computational resources, we conduct all
of our ablation studies on the reduced dataset unless other-
wise specified.

Recipe Tuning. We further examine the impact of differ-
ent training configurations in Table 4, including the stage
at which our loss objective is added and the balancing term
« (from Equation 8). This ablation study is conducted us-
ing the reduced data mix due to computational constraints.
First, compared to the baseline, which does not use our ob-
jective in either stage, all configurations incorporating the
proposed objective, unless the variant with a too-large bal-
ancing term shows improved performance across all bench-
marks, reinforcing both the effectiveness and generalizabil-
ity of our method. Next, We find that the objective works

better in the pre-training stage, likely because the alignment
between language and visual spaces is primarily established
during pre-training, with our objective enhancing this map-
ping process. Finally, a smaller loss balance term works
better with 0.1 yields and overall best performance.

Training Source Data and Architecture. We begin by ab-
lating the choice of MLLM components and training data
sources. Results for the two baseline variants mentioned in
Section 4.1, along with our primary baseline, are reported
in Table 5. Consistent with previous findings [46], both the
model architecture and training data have a huge impact on
MLLM performance, with the data source proving to be es-
pecially influential. Notably, applying our self-distillation
objective consistently enhances performance across all vari-
ants, demonstrating the robustness and generalizability of
our approach across different configurations. These results
highlight potential future directions for improving MLLM
training.

Choice of Layers for Applying Our Loss. By default,
we apply the reverse multimodal projector to the final self-
attention layer of the LLM. We created several variants to
explore the effect of applying our loss function at different
layer indices, with results shown in Table 6. Our findings
suggest that the proposed objective performs best when ap-
plied to later layers, though it consistently improves base-
line performance regardless of the layer. This confirms the
effectiveness of our method design.

Switching to MSE Loss. We compare the impact of us-



Loss Format | SEED  Real-World QA CV-Bench?”  MMVP  MME” GQA

Baseline 64.4 58.2 60.4 374 15358  62.6
Cosine 65.2 59.1 61.3 38.6 15780  63.5
MSE 64.7 58.6 60.5 37.7 1546.1  62.3

Table 7. Ablation on the self-distillation loss function. Recipe tun-
ing with our proposed method. Results are obtained with SigL.IP
+ QWen2 on the reduced data mix. Using cosine similarity loss
yields a better performance by avoiding moving to trivial solu-
tions.

Figure 4. Visual comparisons for semantic segmentation between
our MLLM model and its standalone CLIP encoder. The segmen-
tations based on our MLLM visual tokens are smoother and more
accurate, indicating that these visual tokens retain enough visual
information thereby boosting the core vision-language reasoning
capability of MLLMs.

ing cosine similarity loss versus mean square error (MSE)
loss in Table 7. Cosine similarity outperforms MSE, as it
prevents convergence to trivial solutions that fail to capture
meaningful mapping functions, further validating the effec-
tive design of our approach.

4.4. Discussion

Visual Understanding Capability. In Section 2, we eval-
uated visual tokens in MLLMs in comparison to their vi-
sion encoders on downstream tasks. Here, we conduct the
same evaluation on all of our final models. Quantitative
results are reported in Figure 5. The performance gap be-
tween the vision encoder and the MLLM output becomes
much smaller for all of them. Notably, for the version
with CLIP encoder, our model even outperforms the vision
encoder on the semantic segmentation task, demonstrating
that our approach effectively retains critical visual informa-
tion, thereby enhancing the core vision-language reasoning
capabilities of MLLMs. We also show the qualitative com-
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Figure 5. Quantitative evaluation of our method on downstream vi-
sual tasks. After applying our self-distillation objective, the inter-
mediate visual tokens from MLLMs get improved, thereby boost-
ing the recognition capability of MLLMs.

parison for this variant in Figure 4. Compared to its en-
coder, our final visual tokens maintain a clearer boundary
and better semantic correspondence.

Learning from External Visual Expert Model. Our pri-
mary evaluation utilizes a self-distillation approach, pro-
jecting the final visual tokens back into the image feature
space with a cosine similarity loss. However, this core idea
can be extended to using external visual expert models for
supervision. In Table 8. we report results from variants that
incorporate an additional visual foundation model, CLIP, as
sources of supervision. Leveraging an external visual model
as an additional knowledge source further boosts MLLM
performance, with MoE-based supervision yielding overall
better results compared with each individual one. However,
this approach incurs higher computational costs due to the
introduction of new components. Additionally, there are
other promising directions for enhanced supervision, such
as using pixel-wise labels. We leave the exploration of di-
rect visual supervision as a future direction for this work.

5. Related Work

Multi-modal Large Language Models (MLLMs) extend
traditional large language models [9, 48, 55, 64] beyond
solely processing natural language, integrating data from



Encoder LLM Data Visual Expert Models | SEED  Real-WorldQA  CV-Bench?”? MMVP MME” GQA
CLIP 67.2 59.7 62.1 38.4 1564.8  64.1

SigLIP  QWen2-7B  Reduced SigLIP 66.2 59.1 61.6 38.6 1578.0 63.5
SigLIP + CLIP 67.5 59.6 62.7 38.6 1588.1 65.2

Table 8. Learning from an external visual expert model. Using additional visual expert models as sources for distillation further enhances

performance on various MLLM benchmarks.

multiple modalities to enable a more comprehensive un-
derstanding and generation across diverse forms of infor-
mation. Pioneering models like Flamingo and its succes-
sors [1, 3, 27] introduced visual adaptation layers (e.g.
perceiver [18]) and cross-attention modules to fuse visual
and language information effectively. Building on this,
models such as MM-GPT [13] and Otter [23], have lever-
aged well-constructed multimodal data to enhance conver-
sational capabilities, expanding the utility os MLLMs as
interactive chatbots with broader real-world applications.
More recently, LLaVA [31] refined cross-attention architec-
tures through joint attention, projecting visual tokens into
the language space and then processing them alongside lan-
guage tokens within a pre-trained large language model.
This method has shown promising improvements across
diverse visual-language tasks. Continuing advancements
in this domain, including efficient inference [4, 29, 66],
video adaptation [11, 26, 58], and architecture-wise opti-
mization [2, 6, 17, 32, 33, 45, 46, 50, 54, 57], bring MLLMs
closer to real-world deployment and broaden their practical
utility.

MLLMs for Visual Perception. While MLLMs excel
in understanding natural images and generating language-
based responses, recent research has explored extending
their capabilities to visual grounding. Some approaches [5,
40, 51, 59, 62] focus on enabling MLLMs to engage
in region-specific interactions, identifying and conversing
about specific image regions (e.g., bounding boxes or poly-
gons). Although these models can handle region-focused
data, their output remains text-based, limiting their effec-
tiveness for visual grounding tasks that require more direct
integration with visual data. In contrast, other methods have
designed and trained MLLMs directly for visual perception
tasks, such as referral segmentation [21, 42, 53] and im-
ages generation [12, 20, 39], by incorporating additional
visual components to existing MLLM architectures. How-
ever, these methods typically rely on substantial, complex
visual modules to enable such capabilities. By contrast, our
approach aims to evaluate the core visual representations of
MLLMs for visual understanding by applying lightweight
task head, and further enhances their vision-language un-
derstanding capacity by refining these representations.

MLLM Evaluation and Benchmarks. The evaluation of
MLLMs spans a wide range of tasks, including knowl-

edge assessment [19, 56, 60], OCR [34, 36, 37], visual
perception [10, 16, 24, 47, 52], etc. Beyond these funda-
mental evaluations, Beyond these core evaluations, Zhang
et al. [63] examine the image classification capabilities of
MLLMs, while Li et al. [25] investigates compositionality
and biases within these models. POPE [28] highlights the
issue of object hallucination in MLLMs and introduces a
benchmark dataset to assess this problem. Cambrian [46]
provides a comprehensive analysis of visual understand-
ing in MLLMs, proposing a vision-centric benchmark for
a thorough evaluation. In this work, we focus on enhancing
the recognition capabilities of MLLMs, with particular em-
phasis on perception-related evaluations. Moreover, we also
evaluate the representation of MLLM (visual tokens) on
vision-specific datasets, including semantic segmentation
on ADE20K [65] and depth estimation on Cityscapes [8].
Other potential datasets for evaluating MLLM visual tokens
include image classification on ImageNet [43] and object
detection on COCO [30].

6. Conclusion and Future Work

In this work, we introduce a novel self-distillation approach
to enhance visual tokens in MLLMs, enabling more effec-
tive vision-language reasoning. Our method preserves cru-
cial visual information through a reverse multimodal pro-
jection, consistently improving performance on recogni-
tion tasks while remaining adaptable across configurations.
These findings highlight the importance of robust visual
representations in MLLMs, opening pathways for future re-
search in multimodal learning.

Future Work. In this work, we supervise the visual tokens
in MLLMs with features from vision encoders. Further-
more, a promising direction is to leverage additional vision-
specific data as the supervision, e.g., bounding boxes for
object detection, or dense pixel labels for segmentation. We
believe leveraging such data sources can potentially bring
a larger boost to the recognition capacity of MLLMs and
further improve the quality of language responses.
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